## Structure Reports

Online
ISSN 1600-5368

## 2-Chloro-4-(1H-pyrazol-1-yl)-5(trifluoromethyl)pyrimidine

Kevin D. Bunker, ${ }^{\text {a }}$ Curtis Moore, ${ }^{\text {b }}$ Cynthia L. Palmer, ${ }^{\text {a }}$ Arnold L. Rheingold ${ }^{\text {b }}$ and Alex Yanovsky ${ }^{\text {a* }}$<br>${ }^{\text {a PPfizer Global Research and Development, La Jolla Labs, } 10770 \text { Science Center }}$ Drive, San Diego, CA 92121, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA<br>Correspondence e-mail: alex.yanovsky@pfizer.com

Received 18 May 2010; accepted 20 May 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.033 ; \omega R$ factor $=0.082 ;$ data-to-parameter ratio $=9.7$.

The reaction of 2,4-dichloro-5-(trifluoromethyl)pyrimidine with $1 H$-pyrazole gave two structural isomers in a $1: 1$ ratio that were separable by chromatography. The title compound, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{~N}_{4}$, was the first product to elute and was characterized in the present study to confirm that substitution by the pyrazolyl group had occurred at position 4. The molecule (with the exception of the F atoms) is essentially planar, with a mean deviation of $0.034 \AA$ from the leastsquares plane through all non- H and non-F atoms. The bond angles in the pyrimidine ring show a pronounced alternating pattern with three angles, including those at the two N atoms being narrower, and the remaining three wider than $120^{\circ}$.

## Related literature

For the structures of similar pyrazolylpyrimidine derivatives, see: Peresypkina et al. (2005); Liu et al. (2005); Brunet et al. (2007). For statistics on endocyclic angular distortions in triazine derivatives similar to those observed in the title compound, see: Allington et al. (2001).


## Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{~N}_{4}$
$M_{r}=248.60$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$V=939.12(9) \AA^{3}$
$Z=4$
$a=5.5776$ (3) $\AA$
$b=7.7117$ (4) $\AA$
$c=21.8335(12) \AA$

## Data collection

Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.305, T_{\max }=0.697$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.082$
$S=1.02$
1402 reflections
145 parameters
H-atom parameters constrained
$\mathrm{Cu} K \alpha$ radiation
$\mu=3.90 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.40 \times 0.21 \times 0.10 \mathrm{~mm}$

3416 measured reflections
1402 independent reflections
1273 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=61.9^{\circ}$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e} \mathrm{A}^{-3}$
Absolute structure: Flack (1983),
503 Friedel pairs
Flack parameter: 0.05 (2)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2213).

## References

Allington, R. D., Attwood, D., Hamerton, I., Hay, J. N. \& Howlin, B. J. (2001). Comp. Theor. Polym. Sci. 11, 467-473.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Brunet, E., Juanes, O., Sedano, R. \& Rodriguez-Ubis, J. C. (2007). Tetrahedron Lett. 48, 1091-1094.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Liu, W.-M., Zhu, Y.-Q., Wang, Y.-F., Li, G.-C. \& Yang, H.-Z. (2005). Acta Cryst. E61, o1821-o1822.
Peresypkina, E. V., Bushuev, M. B., Virovets, A. V., Krivopalov, V. P., Lavrenova, L. G. \& Larionov, S. V. (2005). Acta Cryst. B61, 164-173.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supplementary materials

Acta Cryst. (2010). E66, o1448 [ doi:10.1107/S1600536810018854]

## 2-Chloro-4-(1H-pyrazol-1-yl)-5-(trifluoromethyl)pyrimidine

K. D. Bunker, C. Moore, C. L. Palmer, A. L. Rheingold and A. Yanovsky

## Comment

The reaction of 2,4-dichloro-5-(trifluoromethyl)pyrimidine with $1 H$-pyrazole gave two structural isomers in a 1:1 ratio that were separable by chromatography. The title compound was the first product to elute and was characterized in the present study to confirm substitution by N-pyrazolyl group to have occurred at position 4 (Fig. 1).

The molecule (with the exception of the F atoms) is essentially planar: the maximum displacement of the N 1 atom from the plane, drawn through all non-F and non-H atoms, is equal to 0.076 (4) $\AA$. Other pyrazolylpyrimidine derivatives were also shown to have planar molecules (Peresypkina et al., 2005; Liu et al., 2005; Brunet et al., 2007).

The geometry of the pyrimidine ring is characterized by alternating of bond angle distortions: angles at the N3, N4 and C 5 atoms $\left[112.8(3) ; 116.1(3) ; 115.4(3)^{\circ}\right]$ are all narrower, whereas the remaining angles in the ring at the $\mathrm{C} 4, \mathrm{C} 6$ and C7 atoms [121.2 (3); $\left.124.7(3) ; 129.7(3)^{\circ}\right]$ are wider than $120^{\circ}$. Such angular distortions were also observed in other pyrimidine structures (see, for instance, the above quoted papers). The study by Allington et al. (2001) contains analysis of some statistics on similar angular distortions in the triazine derivatives.

The dramatic difference between the exocyclic bond angles $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8127.1$ (3) ${ }^{\circ}$ and $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8117.5$ (3) ${ }^{\circ}$ can be attributed to the repulsion of the $\mathrm{CF}_{3}$-group from pyrazolyl substituent (the $\mathrm{F} 1 \cdots \mathrm{~N} 1$ and $\mathrm{F} 2 \cdots \mathrm{~N} 1$ distances are 2.720 (3) $\AA$ and 2.774 (3) $\AA$ respectively).

## Experimental

2-Chloro-4-(1H-pyrazol-1-yl)-5-(trifluoromethyl)pyrimidine and 4-chloro-2-(1H-pyrazol-1-yl)-5(trifluoromethyl)pyrimidine. To a $N, N$-dimethylacetamide ( 46.0 ml ) solution of pyrazole ( $726 \mathrm{mg}, 10.7 \mathrm{mmol}$ ) and potassium carbonate ( $3.84 \mathrm{~g}, 27.8 \mathrm{mmol}$ ) was added 2,4-dichloro-5-trifluoromethyl-pyrimidine ( $2.01 \mathrm{~g}, 1.250 \mathrm{ml}, 9.27 \mathrm{mmol}$ ) by syringe in one shot at rt . The mixture was stirred overnight and monitored by TLC ( $20 \% \mathrm{EtOAc} /$ heptane $)$. After consumption of starting material, the reaction mixture was diluted with water and extracted with EtOAc ( $3 \times$ ). The organic layers were combined, dried, and concentrated. The crude residue was subjected to flash chromatography (silica gel, 0-40\% EtOAc/ heptane), and three major bands eluted. The first major band was isolated to give $460 \mathrm{mg}(20 \%)$ of 2-chloro- 4 -( 1 H -pyrazol1 -yl)-5-(trifluoromethyl)pyrimidine. The second band was also collected to give $460 \mathrm{mg}(20 \%)$ of 4-chloro-2-( 1 H -pyrazol-1-yl)-5-(trifluoromethyl)pyrimidine. The third band was found to be 2,4-di(1H-pyrazol-1-yl)-5-(trifluoromethyl)pyrimidine and was not isolated. X-ray quality crystals of the first product to elute were grown in DCM/heptane upon slow evaporation.

2-chloro-4-(1H-pyrazol-1-yl)-5-(trifluoromethyl)pyrimidine: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CHLOROFORM}-d$ ) $\delta \mathrm{ppm} 6.56$ (dd, $\mathrm{J}=2.77,1.51 \mathrm{~Hz}, 1 \mathrm{H}) 7.89(\mathrm{~d}, \mathrm{~J}=0.76 \mathrm{~Hz}, 1 \mathrm{H}) 8.59(\mathrm{dd}, \mathrm{J}=2.77,0.76 \mathrm{~Hz}, 1 \mathrm{H}) 8.96$ (s, 1 H). ${ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, CHLOROFORM- $d$ ) $\delta \mathrm{ppm} 109.96$ ( $\mathrm{s}, 1 \mathrm{C}$ ) 111.39-112.97 (m, 1 C) 117.69-126.63 (m, 1 C ) 130.42 (s, 1 C ) 145.57 ( $\mathrm{s}, 1$ C) $155.57(\mathrm{~s}, 1 \mathrm{C}) 160.86(\mathrm{q}, \mathrm{J}=7.09 \mathrm{~Hz}, 1 \mathrm{C}) 163.04(\mathrm{~s}, 1 \mathrm{C})$.

## supplementary materials

4-chloro-2-(1H-pyrazol-1-yl)-5-(trifluoromethyl)pyrimidine: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CHLOROFORM}-d$ ) $\delta \mathrm{ppm} 6.57$ (dd, $\mathrm{J}=2.77,1.51 \mathrm{~Hz}, 1 \mathrm{H}) 7.90(\mathrm{~d}, \mathrm{~J}=1.01 \mathrm{~Hz}, 1 \mathrm{H}) 8.59(\mathrm{dd}, \mathrm{J}=2.77,0.50 \mathrm{~Hz}, 1 \mathrm{H}) 8.92(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM- $d$ ) $\delta$ ppm $110.22(\mathrm{~s}, 1 \mathrm{C}) 121.68(\mathrm{q}, \mathrm{J}=272.65 \mathrm{~Hz}, 1 \mathrm{C}) 120.34(\mathrm{q}, \mathrm{J}=33.99 \mathrm{~Hz}, 1 \mathrm{C}) 130.23(\mathrm{~s}, 1 \mathrm{C}) 145.59$ (s, 1 C) 156.64 ( s, 1 C) 158.07 ( $\mathrm{q}, \mathrm{J}=5.14 \mathrm{~Hz}, 1 \mathrm{C}$ ) 161.02 ( $\mathrm{s}, 1 \mathrm{C}$ ).

## Refinement

All H atoms were placed in geometrically calculated positions ( $\mathrm{C}-\mathrm{H} 0.93 \AA$ ) and included in the refinement in riding motion approximation. The $U_{\text {iso }}(\mathrm{H})$ were set to $1.2 U_{\text {eq }}$ of the carrying atom.

## Figures



Fig. 1. Molecular structure of the title compound, showing $50 \%$ probability displacement ellipsoids and atom numbering scheme. H atoms are drawn as circles with arbitrary small radius.

## 2-Chloro-4-(1H-pyrazol-1-yl)-5-(trifluoromethyl)pyrimidine

## Crystal data

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{~N}_{4}$
$M_{r}=248.60$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=5.5776$ (3) $\AA$
$b=7.7117$ (4) $\AA$
$c=21.8335(12) \AA$
$V=939.12(9) \AA^{3}$
$Z=4$

## Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.305, T_{\text {max }}=0.697$
3416 measured reflections

$$
\begin{aligned}
& F(000)=496 \\
& D_{\mathrm{x}}=1.758 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54178 \AA \\
& \text { Cell parameters from } 2204 \text { reflections } \\
& \theta=4.1-61.5^{\circ} \\
& \mu=3.90 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Rod, colourless } \\
& 0.40 \times 0.21 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 1402 \text { independent reflections } \\
& 1273 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.030 \\
& \theta_{\max }=61.9^{\circ}, \theta_{\min }=4.0^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-8 \rightarrow 8 \\
& l=-25 \rightarrow 24
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.082$
$S=1.02$
1402 reflections
145 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.048 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.21$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22$ e $\AA^{-3}$
Absolute structure: Flack (1983), 503 Friedel pairs
Flack parameter: 0.05 (2)

## Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor wR and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Cl1 | $0.18059(15)$ | $0.39628(9)$ | $0.50346(4)$ | $0.0390(2)$ |
| F1 | $0.7206(4)$ | $1.0219(2)$ | $0.35103(8)$ | $0.0430(5)$ |
| F2 | $0.4712(4)$ | $0.9283(2)$ | $0.28305(8)$ | $0.0450(5)$ |
| F3 | $0.3535(5)$ | $1.0974(2)$ | $0.35501(11)$ | $0.0629(7)$ |
| N1 | $0.8456(5)$ | $0.7028(3)$ | $0.30856(11)$ | $0.0326(6)$ |
| N2 | $0.7484(5)$ | $0.5994(3)$ | $0.35248(10)$ | $0.0262(5)$ |
| N3 | $0.1542(5)$ | $0.7067(3)$ | $0.45907(11)$ | $0.0308(6)$ |
| N4 | $0.4754(5)$ | $0.5271(3)$ | $0.42520(10)$ | $0.0272(6)$ |
| C1 | $0.8693(6)$ | $0.4455(4)$ | $0.35742(13)$ | $0.0312(7)$ |
| H1A | 0.8338 | 0.3531 | 0.3848 | $0.037^{*}$ |
| C2 | $1.0494(6)$ | $0.4503(4)$ | $0.31581(13)$ | $0.0312(7)$ |
| H2A | 1.1661 | 0.3635 | 0.3079 | $0.037 *$ |
| C3 | $1.0253(6)$ | $0.6127(4)$ | $0.28693(13)$ | $0.0332(7)$ |
| H3A | 1.1282 | 0.6524 | 0.2552 | $0.040^{*}$ |
| C4 | $0.5510(6)$ | $0.6502(3)$ | $0.38708(12)$ | $0.0250(6)$ |
| C5 | $0.4336(6)$ | $0.8113(4)$ | $0.38345(13)$ | $0.0283(6)$ |
| C6 | $0.2380(6)$ | $0.8301(3)$ | $0.42115(13)$ | $0.0304(7)$ |


| H6A | 0.1561 | 0.9381 | 0.4204 | $0.037 *$ |
| :--- | :--- | :--- | :--- | :--- |
| C7 | $0.2831(6)$ | $0.5640(3)$ | $0.45766(12)$ | $0.0296(7)$ |
| C8 | $0.4981(7)$ | $0.9624(4)$ | $0.34258(14)$ | $0.0378(8)$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C11 | $0.0460(5)$ | $0.0364(3)$ | $0.0347(4)$ | $-0.0015(3)$ | $0.0081(4)$ | $0.0070(3)$ |
| F1 | $0.0604(15)$ | $0.0304(8)$ | $0.0382(10)$ | $-0.0103(9)$ | $0.0101(10)$ | $-0.0007(7)$ |
| F2 | $0.0489(13)$ | $0.0564(12)$ | $0.0298(10)$ | $0.0079(10)$ | $-0.0012(8)$ | $0.0164(8)$ |
| F3 | $0.0824(18)$ | $0.0377(10)$ | $0.0685(14)$ | $0.0283(12)$ | $0.0320(13)$ | $0.0215(10)$ |
| N1 | $0.0390(16)$ | $0.0315(12)$ | $0.0272(14)$ | $0.0008(12)$ | $0.0052(12)$ | $0.0051(10)$ |
| N2 | $0.0341(15)$ | $0.0238(10)$ | $0.0208(11)$ | $0.0022(11)$ | $-0.0010(10)$ | $0.0006(9)$ |
| N3 | $0.0295(15)$ | $0.0341(13)$ | $0.0288(14)$ | $0.0000(12)$ | $0.0027(11)$ | $-0.0013(10)$ |
| N4 | $0.0355(16)$ | $0.0256(10)$ | $0.0205(12)$ | $-0.0014(11)$ | $-0.0022(11)$ | $-0.0010(9)$ |
| C1 | $0.043(2)$ | $0.0259(14)$ | $0.0242(14)$ | $0.0034(13)$ | $-0.0011(14)$ | $-0.0004(11)$ |
| C2 | $0.0343(19)$ | $0.0304(14)$ | $0.0288(16)$ | $0.0047(12)$ | $-0.0038(14)$ | $-0.0053(12)$ |
| C3 | $0.038(2)$ | $0.0353(15)$ | $0.0262(15)$ | $0.0021(15)$ | $0.0067(13)$ | $-0.0006(13)$ |
| C4 | $0.0296(16)$ | $0.0269(13)$ | $0.0185(13)$ | $-0.0009(11)$ | $-0.0032(13)$ | $-0.0021(11)$ |
| C5 | $0.0361(18)$ | $0.0272(14)$ | $0.0215(14)$ | $0.0029(12)$ | $-0.0055(14)$ | $-0.0006(12)$ |
| C6 | $0.0332(18)$ | $0.0269(13)$ | $0.0312(15)$ | $0.0043(12)$ | $-0.0014(14)$ | $-0.0001(11)$ |
| C7 | $0.038(2)$ | $0.0311(15)$ | $0.0198(13)$ | $-0.0031(13)$ | $-0.0031(13)$ | $0.0008(11)$ |
| C8 | $0.050(2)$ | $0.0337(15)$ | $0.0300(17)$ | $0.0120(15)$ | $0.0064(15)$ | $0.0052(13)$ |

Geometric parameters ( $\AA{ }^{\circ}{ }^{\circ}$ )

| $\mathrm{C} 11-\mathrm{C} 7$ | $1.732(3)$ |
| :--- | :--- |
| $\mathrm{F} 1-\mathrm{C} 8$ | $1.336(4)$ |
| $\mathrm{F} 2-\mathrm{C} 8$ | $1.334(4)$ |
| $\mathrm{F} 3-\mathrm{C} 8$ | $1.345(4)$ |
| $\mathrm{N} 1-\mathrm{C} 3$ | $1.308(4)$ |
| $\mathrm{N} 1-\mathrm{N} 2$ | $1.360(3)$ |
| $\mathrm{N} 2-\mathrm{C} 1$ | $1.369(4)$ |
| $\mathrm{N} 2-\mathrm{C} 4$ | $1.392(4)$ |
| $\mathrm{N} 3-\mathrm{C} 7$ | $1.315(4)$ |
| $\mathrm{N} 3-\mathrm{C} 6$ | $1.345(4)$ |
| $\mathrm{N} 4-\mathrm{C} 7$ | $1.316(4)$ |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2$ | $104.4(2)$ |
| $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$ | $111.6(3)$ |
| $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 4$ | $122.2(2)$ |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$ | $126.2(2)$ |
| $\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 6$ | $112.8(3)$ |
| $\mathrm{C} 7-\mathrm{N} 4-\mathrm{C} 4$ | $116.1(3)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2$ | $106.8(3)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 126.6 |
| $\mathrm{~N} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 126.6 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $104.7(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 127.6 |


| $\mathrm{N} 4-\mathrm{C} 4$ | $1.331(4)$ |
| :--- | :--- |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.355(5)$ |
| $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 0.9500 |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.408(4)$ |
| $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 0.9500 |
| $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 0.9500 |
| $\mathrm{C} 4-\mathrm{C} 5$ | $1.406(4)$ |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.374(5)$ |
| $\mathrm{C} 5-\mathrm{C} 8$ | $1.511(4)$ |
| $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 0.9500 |
|  |  |
| $\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 5$ | $125.9(3)$ |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$ | $115.4(3)$ |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$ | $117.5(3)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$ | $127.1(3)$ |
| $\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 5$ | $124.7(3)$ |
| $\mathrm{N} 3-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 117.6 |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 117.6 |
| $\mathrm{~N} 3-\mathrm{C} 7-\mathrm{N} 4$ | $129.7(3)$ |
| $\mathrm{N} 3-\mathrm{C} 7-\mathrm{Cl} 1$ | $115.5(2)$ |
| $\mathrm{N} 4-\mathrm{C} 7-\mathrm{Cl1}$ | $114.7(2)$ |
| $\mathrm{F} 2-\mathrm{C} 8-\mathrm{F} 1$ | $107.9(3)$ |

## sup-4

## supplementary materials

| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 127.6 | F2-C8-F3 | $106.4(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$ | $112.6(3)$ | F1-C8-F3 | $105.3(3)$ |
| $\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 123.7 | F2-C8-C5 | $113.4(3)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 123.7 | F1-C8-C5 | $113.9(3)$ |
| N4-C4-N2 | $112.9(2)$ | F3-C8-C5 | $109.6(3)$ |
| N4-C4-C5 | $121.2(3)$ |  |  |

## supplementary materials

Fig. 1


